電法勘探
通過對人工或天然電場(或電磁場)的研究,獲得巖石不同電學特性的資料,以判斷有關水文地質(zhì)及工程地質(zhì)問題。常用的是直流電法勘探,主要研究巖石的電阻率和電化學活動性,可分為電阻率法、自然電場法和激發(fā)極化法等。
電阻率法
自然界中各種巖石的導電性能不同。一般情況下,巖漿巖、變質(zhì)巖和沉積巖中的致密灰?guī)r的電阻率都很高,超過10~歐姆·米,只有當它受風化,構(gòu)造破碎時,由于含泥量增多,水分增加時,其電阻率值才降到102)歐姆·米級或更小。含泥質(zhì)沉積物或含高礦化度地下水的砂礫石層,其電阻率較低(10~102)歐姆·米級)。電阻率法常用于探測風化殼的厚度,覆蓋層下新鮮基巖面的起伏、盆地結(jié)構(gòu)形態(tài)、儲水構(gòu)造,追索古河道,圈定巖溶發(fā)育帶,確定斷層位置等。
自然電場法
當?shù)叵滤诳紫兜貙又辛鲃訒r,毛細孔壁產(chǎn)生選擇性吸附負離子的作用,使正離子相對向水流下游移動,形成過濾電位。因此作面積性的自然電位測量,可判斷潛水的流向。在水庫的漏水地段可出現(xiàn)自然電位的負異常,而在隱伏上升泉處則可獲得自然電位的正異常。
考古探測
利用地下古代遺物與周邊物質(zhì)的物性差異,采用地球物理勘探手段對它們的平面位置、埋深、分布范圍進行調(diào)查。 利用雷達多天線陣列技術,探測的精度高,在小面積定位方面有無可比擬的優(yōu)勢;磁法探測能更快、更大面積地揭示地下遺址的面貌,結(jié)合已經(jīng)為考古發(fā)掘與考古調(diào)查所認識的部分,加以典型影像校正,能更完整地認識遺址的全貌。
主要應用于找出遺址內(nèi)土城墻、壕溝、坑、柱洞、房屋、墓穴等的位置及分布情況。
遙感技術
根據(jù)電磁波輻射(發(fā)射、吸收、反射)的理論,應用各種光學、電子學探測器對遠距離目標進行探測和識別的綜合技術。航空攝影地質(zhì)是早的一種遙感地質(zhì)方法,至今仍然是遙感地質(zhì)中一個重要的組成部分。60年代以來,在運載工具、傳感器及圖像處理、解釋方法上都有了迅速發(fā)展。除可見光波段攝影黑白像片和彩色像片外,還發(fā)展了紅外線,多波段、雷達、激光等技術。利用地物反射人工發(fā)射的電磁波進行遙感的稱為主動遙感;利用地物反射太陽輻射的或由地物自身發(fā)射的電磁波進行遙感的稱為被動遙感。遙感技術可以提供有關地貌、巖性、地層、褶皺、斷層、構(gòu)造、巖漿巖以及隱伏構(gòu)造和深部構(gòu)造的資料。紅外遙感技術在水文地質(zhì)勘察中具有特別重要的意義。遙感技術不僅能克服地面點、線調(diào)查的局限性及視野的阻隔,使人們能從整體上宏觀地進行地質(zhì)研究,而且還能提供各種電磁波的地質(zhì)信息,其中微波能穿透植被和第四紀地層,提供一定深度范圍的地質(zhì)信息。此外,還可以對一個地區(qū)反復成像,以取得的的地質(zhì)動態(tài)資料。
應用地球物理學的原理進行工程地質(zhì)、水文地質(zhì)調(diào)查的勘探和測試方法。它是地球物理勘探的一個分支,簡稱工程物探。由于各種巖石或地質(zhì)體在密度、磁性、導電性、彈性、放射性等物理性質(zhì)上存在著差異,人們用不同方法和不同儀器,測量其天然或人工的地球物理場,并分析研究由于這些物理性質(zhì)差異而引起物理場的變異,再經(jīng)推斷解釋,以了解地下地質(zhì)情況;或利用儀器直接測定巖體的物理特性,提供工程設計需要的參數(shù)。水利工程地質(zhì)勘察中廣泛而正確地運用工程物探,可加快勘測速度,降低成本,還可得到巖體原位的物性參數(shù),對工程地質(zhì)條件的定量評價起到促進作用。中國水利工程地質(zhì)勘察中應用工程物探始于20世紀50年代初。常用的方法主要有地震勘探、電法勘探、彈性波測試和測井,此外還有放射性勘探、微重力勘探、磁法勘探等。