光學掃描式讀票機(Optical Scan)
原理:通過光學傳感器掃描選票上的標記(如鉛筆填涂、墨水筆勾選),利用圖像識別技術判斷選民選擇。
特點:
成本較低,兼容紙質選票,適合大規(guī)模選舉。
需選票格式標準化(如固定位置的填涂框)。
應用場景:美國大選、印度議會選舉等大規(guī)模紙質選票選舉。
接觸式讀票機(Contact-based)
原理:通過物理接觸(如金屬觸點)檢測選票上的導電標記(如特殊墨水填涂),形成電路導通來識別選擇。
特點:
識別速度快,但對選票材質和標記墨水要求高。
易受污漬、折疊影響,應用場景較窄。
圖像預處理:優(yōu)化原始掃描數(shù)據(jù)
灰度化處理:將彩色圖像轉換為灰度圖,突出標記與背景的亮度差異(如鉛筆填涂區(qū)域灰度值較低)。
二值化轉換:通過設定閾值(如灰度值低于 128 視為標記),將圖像轉化為黑白二值圖,簡化后續(xù)計算(例:填涂框內黑色像素占比≥30% 視為有效標記)。
噪聲過濾:利用中值濾波、高斯濾波等算法,消除紙張污漬、折疊陰影等干擾(如去除面積小于 10 像素的孤立黑點)。
幾何校正:通過檢測選票邊緣的定位標記(如 registration marks),校正因傳送歪斜導致的圖像旋轉或縮放,確保標記位置與預設模板對齊。
選票預處理:通過紅外光源掃描選票,生成灰度圖像,同時檢測選票邊緣的定位孔(registration holes)以校準位置。
區(qū)域劃分:根據(jù)選票模板,將圖像劃分為總統(tǒng)候選人區(qū)、參議員區(qū)、公投議題區(qū)等獨立 ROI。
填涂分析:對每個候選人對應的橢圓填涂框,計算黑色像素占比,超過 35% 則判定為有效投票。
異常標記處理:若同一總統(tǒng)候選人區(qū)檢測到 2 個及以上有效填涂,系統(tǒng)標記為 “多選票”(overvote),該區(qū)域投票無效。
數(shù)據(jù)同步:每臺讀票機實時將計數(shù)結果通過加密網(wǎng)絡傳輸至選區(qū)服務器,同時保存原始圖像供事后審計(如 2020 年佐治亞州重新計票時,人工核對了掃描圖像與紙質選票)。